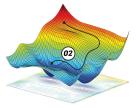


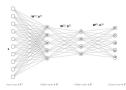
Deep Learning for Computer Vision

Dr. Konda Reddy Mopuri Mehta Family School of Data Science and Artificial Intelligence IIT Guwahati Aug-Dec 2022

So far in the class..

- Scoring function, loss function, gradient descent
- Artificial Neurons and Multi-Layered Perceptron
- CNN building blocks and a case-study



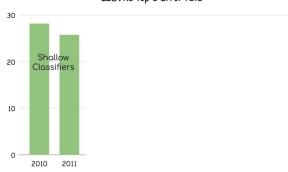


Overview of different CNN architectures

• We will ground the evolution on ILSVRC

Overview of different CNN architectures

• We will ground the evolution on ILSVRC



ILSVRC top-5 Error rate

- 1 8-layer CNN: 5 Conv layers, 3 FC layers
- 2 227×227 input
- 3 Max pooling, ReLU nonlinearity, LRN (not used anymore now)

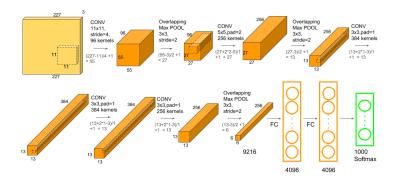


Figure credits:neurohive.io

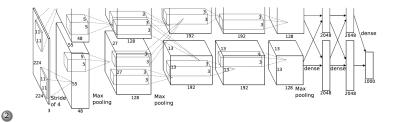
Dr. Konda Reddy Mopuri

(1) Implemented on GTX 580 GPUs (2 of them; 3GB of Memory each)

Figure from AlexNet paper by Kryzhevsky et al.

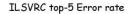
Dr. Konda Reddy Mopuri

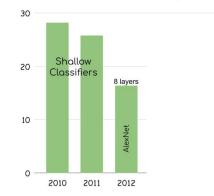
Implemented on GTX 580 GPUs (2 of them; 3GB of Memory each)



Dr. Konda Reddy Mopuri

Figure from AlexNet paper by Kryzhevsky et al.





A more worked-out AlexNet

- A more worked-out AlexNet
- ② More trails on the AlexNet architecture that resulted in less error
 - (11 \times 11 stride 4) \rightarrow (7 \times 7 stride 2)
 - $\,\circ\,$ Conv 3, 4, and 5 (384, 384, 256) \rightarrow (512, 1024, and 512)

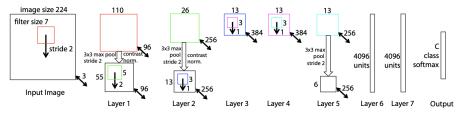
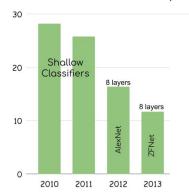


Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as the input. This is convolved with 96 different 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y. The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within 3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 different 55 by 55 element feature maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from the top convolutional layer as input in vector form ($6 \cdot 6 \cdot 256 = 9216$ dimensions). The final layer is a *C*-way softmax function, *C* being the number of classes. All filters and feature maps are square in shape.

Figure from Zeiler and Fergus, ECCV 2014

Dr. Konda Reddy Mopuri

ILSVRC top-5 Error rate



First architecture to have a principled design

I First architecture to have a principled design

- All conv: 3×3 , stride:1, pad:1
 - All max pool: 2×2 , stride:2
 - After pooling, double the channels

2

① 5 Conv stages

Softmax
FC 1000
FC 4096
FC 4096
Pool
3 × 3 conv, 512
Pool
3×3 conv, 512
3×3 conv, 512
3×3 conv, 512
$3 \times 3 conv, 512$
Pool
3 × 3 conv, 256
3 × 3 conv, 256
Pool
3 × 3 conv, 128
3 × 3 conv, 128
Pool
3 × 3 conv, 64

	Softmax			
fc8	FC 1000			
fc7	FC 4096			
fc6	FC 4096			
	Pool			
conv5-3	3 × 3 conv, 512			
conv5-2	3 × 3 conv, 512			
conv5-1	3 × 3 conv, 512			
	Pool			
conv4-3	3 × 3 conv, 512			
conv4-2	3 × 3 conv, 512			
conv4-1	3 × 3 conv, 512			
	Pool			
conv3-2	3 × 3 conv, 256			
conv3-1	3 × 3 conv, 256			
	Pool			
conv2-2	3 × 3 conv, 128			
conv2-1	3 × 3 conv, 128			
	Pool			
conv1-2	3 × 3 conv, 64			
conv1-1	3 × 3 conv, 64			
	Input			

VGG16

VGG19

- ① 5 Conv stages
- ② (initially) Conv-Conv-Pool

		FC 1000
	Softmax	FC 4096
fc8	FC 1000	FC 4096
fc7	FC 4096	Pool
fc6	FC 4096	$3 \times 3 conv, 5$
	Pool	3 × 3 conv, 5
conv5-3	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv5-2	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv5-1	3 × 3 conv, 512	Pool
	Pool	$3 \times 3 conv, 5$
conv4-3	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv4-2	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv4-1	3 × 3 conv, 512	$3 \times 3 conv, 5$
	Pool	Pool
conv3-2	3 × 3 conv, 256	3 × 3 conv, 2
conv3-1	3 × 3 conv, 256	3 × 3 conv, 2
	Pool	Pool
conv2-2	3 × 3 conv, 128	3 × 3 conv, 1
conv2-1	3 × 3 conv, 128	$3 \times 3 conv, 1$
	Pool	Pool
conv1-2	3 × 3 conv, 64	3 × 3 conv, 6
conv1-1	3 × 3 conv, 64	3 × 3 conv, 6
	Input	Input
	VGG16	VGG19

- 1 5 Conv stages
- (initially) Conv-Conv-Pool
- ③ (later) Conv-Conv-Conv-Pool (VGG19 has one more Conv)

		FC 1000
	Softmax	FC 4096
fc8	FC 1000	FC 4096
fc7	FC 4096	Pool
fc6	FC 4096	$3 \times 3 conv, 5$
	Pool	$3 \times 3 conv, 5$
conv5-3	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv5-2	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv5-1	3 × 3 conv, 512	Pool
	Pool	$3 \times 3 conv, 5$
conv4-3	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv4-2	3 × 3 conv, 512	$3 \times 3 conv, 5$
conv4-1	3 × 3 conv, 512	3 × 3 conv, 5
	Pool	Pool
conv3-2	3 × 3 conv, 256	$3 \times 3 conv, 2$
conv3-1	3 × 3 conv, 256	$3 \times 3 conv, 2$
	Pool	Pool
conv2-2	3 × 3 conv, 128	3 × 3 conv, 1
conv2-1	3 × 3 conv, 128	$3 \times 3 conv, 1$
	Pool	Pool
conv1-2	3 × 3 conv, 64	$3 \times 3 conv, \epsilon$
conv1-1	3 × 3 conv, 64	$3 \times 3 conv, 6$
	Input	Input
	VGG16	VGG19

Softmax

(1) Why Only 3×3 Convs?

- (1) Why Only 3×3 Convs?
- 2 Case-1: Conv $(5 \times 5, C \rightarrow C)$

- **1** Why Only 3×3 Convs?
- 2 Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters:

 $C\times C\times 5\times 5=25C^2$

- **1** Why Only 3×3 Convs?
- 2 Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters:
 - $C\times C\times 5\times 5=25C^2$
 - Flops: $\begin{array}{l} C\times H\times W\times C\times 5\times 5=\\ 25C^2HW \end{array}$

1 Why Only 3×3 Convs?

2 Case-1: Conv
$$(5 \times 5, C \rightarrow C)$$

Parameters:

$$C\times C\times 5\times 5=25C^2$$

• Flops: $\begin{array}{l} C\times H\times W\times C\times 5\times 5=\\ 25C^2HW \end{array}$

1 Case-2: Conv $(3 \times 3, C \rightarrow C)$ and Conv $(3 \times 3, C \rightarrow C)$

- **1** Why Only 3×3 Convs?
- 2 Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters: $C \times C \times 5 \times 5 = 25C^2$
 - Flops:
 - $\begin{array}{l} C\times H\times W\times C\times 5\times 5=\\ 25C^2HW \end{array}$

- **1** Case-2: Conv $(3 \times 3, C \rightarrow C)$ and Conv $(3 \times 3, C \rightarrow C)$
 - Parameters: $2 \times C \times C \times 3 \times 3 = 18C^2$

- **1** Why Only 3×3 Convs?
- 2 Case-1: Conv $(5 \times 5, C \rightarrow C)$
 - Parameters: $C\times C\times 5\times 5=25C^2$
 - $\bullet~$ Flops: $C\times H\times W\times C\times 5\times 5=25C^2HW$

- **1** Case-2: Conv $(3 \times 3, C \rightarrow C)$ and Conv $(3 \times 3, C \rightarrow C)$
 - Parameters: $2\times C\times C\times 3\times 3 = 18C^2$
 - Flops: $2 \times C \times H \times W \times C \times 3 \times 3 = 18C^2HW$

1 Halving the spatial dimensions (max pooling) and doubling the channels \rightarrow computational cost is unchanged

- 1 Halving the spatial dimensions (max pooling) and doubling the channels \rightarrow computational cost is unchanged
- ② Case-1: $C \times 2H \times 2W$, Conv $(3 \times 3, C \rightarrow C)$

- 0 Halving the spatial dimensions (max pooling) and doubling the channels \rightarrow computational cost is unchanged
- ② Case-1: $C \times 2H \times 2W$, Conv $(3 \times 3, C \rightarrow C)$
 - Memory: 4CHW, parameters: $9C^2$, Flops: $36HWC^2$
- **3** Case-2: $2C \times H \times W$, Conv $(3 \times 3, 2C \rightarrow 2C)$
 - Memory: 2CHW, parameters: $36C^2$, Flops: $36HWC^2$

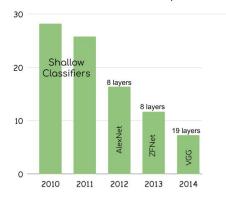
1 Huge network (VGG-16) compared to AlexNet

- I Huge network (VGG-16) compared to AlexNet
- ② Memory: $1.9 \rightarrow 48.6 \text{MB}$ (25X)

- I Huge network (VGG-16) compared to AlexNet
- ② Memory: $1.9 \rightarrow 48.6 \text{MB}$ (25X)
- 3 Parameters: $61 \rightarrow 138M$ (2.3X)

- I Huge network (VGG-16) compared to AlexNet
- 2 Memory: $1.9 \rightarrow 48.6 \text{MB}$ (25X)
- 3 Parameters: $61 \rightarrow 138M$ (2.3X)
- ④ Flops: 0.7 → 13.6G Flop (19.4X)

ILSVRC top-5 Error rate



GoogLeNet (2014)

Efficiency was the focus of design

Figure credits:Medium.com and Anas Brital

Dr. Konda Reddy Mopuri

GoogLeNet (2014)

- Efficiency was the focus of design
- ② Reduce the parameters, memory and the compute requirements (towards deployment)

Figure credits: Medium.com and Anas Brital

GoogLeNet (2014)

- Efficiency was the focus of design
- ② Reduce the parameters, memory and the compute requirements (towards deployment)

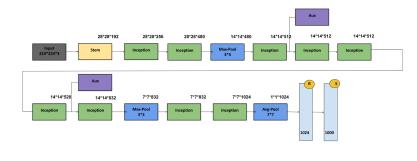


Figure credits:Medium.com and Anas Brital

3

(1) Stem architecture at the early stage \rightarrow aggressive down-sampling

Figure credits: Medium.com and Anas Brital

Dr. Konda Reddy Mopuri

(1) Stem architecture at the early stage ightarrow aggressive down-sampling

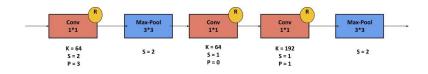
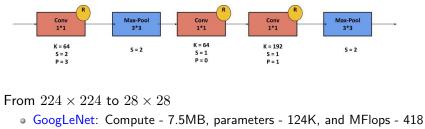


Figure credits: Medium.com and Anas Brital

Dr. Konda Reddy Mopuri

2

 $\textcircled{0} \hspace{0.1in} \text{Stem architecture at the early stage} \rightarrow \text{aggressive down-sampling}$



 VGG-16: Compute - 42.9MB (5.7X), parameters - 1.1M (8.9X), and MFlops - 7485 (17.8X)

Dr. Konda Reddy Mopuri

2

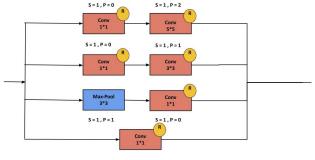
Figure credits: Medium.com and Anas Brital

1 Inception module: unit with parallel branches

Figure credits: Medium.com and Anas Brital

Dr. Konda Reddy Mopuri

- 1 Inception module: unit with parallel branches
- ② Repeated through the architecture



 $\mathsf{S}=\mathsf{1}$, $\mathsf{P}=\mathsf{0}$

Figure credits: Medium.com and Anas Brital

Dr. Konda Reddy Mopuri

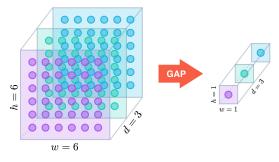
Global Average Pooling (GAP) layer

Alexis Cook

- Global Average Pooling (GAP) layer
- ② Flattening results in huge weight matrices \rightarrow GoogLeNet introduces GAP layer

Alexis Cook

- Global Average Pooling (GAP) layer
- ② Flattening results in huge weight matrices \rightarrow GoogLeNet introduces GAP layer
- ③ Collapses the spatial dimensions by computing the average (kernel size = spatial dimensions of the last conv layer)



Alexis Cook

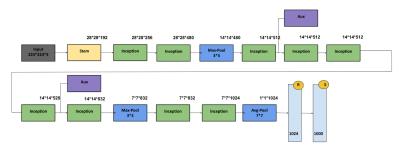
No more fully connected layers

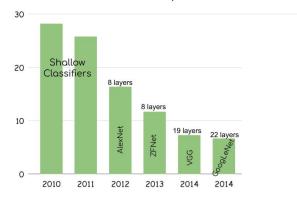
- No more fully connected layers
- ② One linear layer to predict the classification scores (feather light!)

Auxiliary classifiers

- Auxiliary classifiers
- Training using the gradients at the end of the network didn't work well (too deep, gradient propagation was not robust)

- Auxiliary classifiers
- Training using the gradients at the end of the network didn't work well (too deep, gradient propagation was not robust)
- 3 Hack: add auxiliary classifiers at intermediate locations to receive loss/gradients





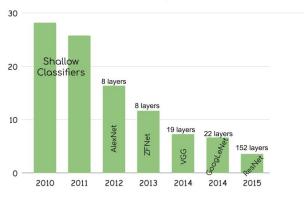
ILSVRC top-5 Error rate

A THE PARTY OF THE

- U Very important time for the DNNs
 - Batch Normalization happened
 - Depth increased by an order (10 \rightarrow 150+)
 - ${\, \bullet \, }$ ILSVRC error almost halved from that of 2014

And The Report

- Very important time for the DNNs
 - Batch Normalization happened
 - Depth increased by an order (10 \rightarrow 150+)
 - ${\, \bullet \, }$ ILSVRC error almost halved from that of 2014



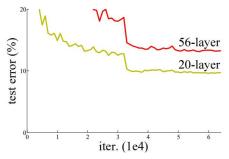
ILSVRC top-5 Error rate

Dr. Konda Reddy Mopuri

2

Training Deeper CNNs

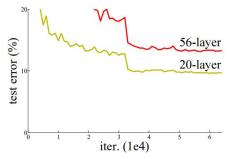
When training the "deeper" CNNs, people observed that they were worse than shallow ones



Dr. Konda Reddy Mopuri

Training Deeper CNNs

When training the "deeper" CNNs, people observed that they were worse than shallow ones



② Initial suspicion was the 'over-fitting'!

Dr. Konda Reddy Mopuri

Figure Credits: He et al. 2015

Training Deeper CNNs

- Initial suspicion was the 'over-fitting'!
- ② However, it was due to the under-fitting

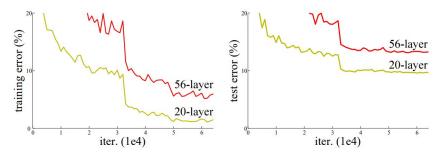


Figure Credits: He et al. 2015

Dr. Konda Reddy Mopuri

Deeper CNNs should easily emulate the shallow ones (extra layers could learn identity function)

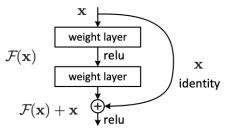
- Deeper CNNs should easily emulate the shallow ones (extra layers could learn identity function)
- 2 This is not the case \rightarrow some issue in the optimization!

- Deeper CNNs should easily emulate the shallow ones (extra layers could learn identity function)
- 2 This is not the case \rightarrow some issue in the optimization!
- Work on the architecture so that learning identity function gets easier with additional layers

Work on the architecture so that learning identity function gets easier with additional layers

Yuanrui Dong

- Work on the architecture so that learning identity function gets easier with additional layers
- 2 ResBlock (residual block)



Yuanrui Dong

ResBlocks help the gradient backpropagation

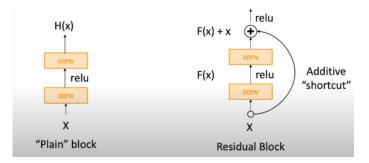


Figure Credits: Dr. Justin Johnson, U Michigan

Dr. Konda Reddy Mopuri

ResNet is a stack of Resblocks

Figure credits: Dr. Justin Johnson, U Michigan

Dr. Konda Reddy Mopuri

- ResNet is a stack of Resblocks
- Inspire from VGG and GoogLeNet

Figure credits: Dr. Justin Johnson, U Michigan

Dr. Konda Reddy Mopuri

- ResNet is a stack of Resblocks
- Inspire from VGG and GoogLeNet
- 3 Simple and regular design like VGG: each resblock has two 3×3 Conv

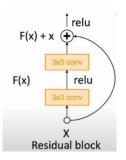


Figure credits: Dr. Justin Johnson, U Michigan

Dr. Konda Reddy Mopuri

In Network has stages: first block of each stage halves the resolution and doubles the channels

- In Network has stages: first block of each stage halves the resolution and doubles the channels
- 2 Aggressive stem in the beginning (downsamples by 4X before the start of the resblocks)

- In Network has stages: first block of each stage halves the resolution and doubles the channels
- 2 Aggressive stem in the beginning (downsamples by 4X before the start of the resblocks)
- ③ Eliminates the FC layers via GAP

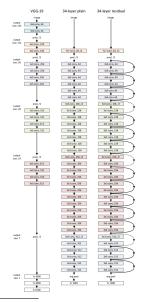


Figure credits: K. he et al., ResNets 92015)

Dr. Konda Reddy Mopuri

ResNet-18

- Stem: 1 Conv
- Stage-1 (C=64): 2 resblocks (4 Conv)
- Stage-2 (C=128): 2 resblocks (4 Conv)
- Stage-3 (C=256): 2 resblocks (4 Conv)
- Stage-4 (C=512): 2 resblocks (4 Conv)
- Linear
- Top-5 error: 10.92 and GFlop: 1.8

1 ResNet-34

- Stem: 1 Conv
- Stage-1 (C=64): 3 resblocks (6 Conv)
- Stage-2 (C=128): 4 resblocks (8 Conv)
- Stage-3 (C=256): 6 resblocks (12 Conv)
- Stage-4 (C=512): 3 resblocks (6 Conv)
- Linear
- Top-5 error: 8.58 and GFlop: 3.6 (VGG: 9.6 and 13.6 respectively)

Bottlneck Residual block

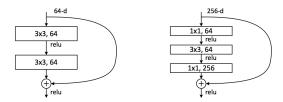


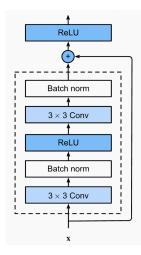
Figure Credits: Nushaine Ferdinand

Dr. Konda Reddy Mopuri

Resnet-34 becomes ResNet-50 if we replace the plain resblocks with bottleneck ones

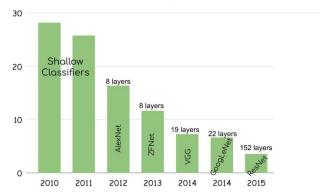
- Resnet-34 becomes ResNet-50 if we replace the plain resblocks with bottleneck ones
- 2 More blocks at each stage result in ResNet-101 and Resnet-152 architectures

Resblocks have Batch Normalization layers



Yashovardhan Shinde and Analyticsvidhya

Dr. Konda Reddy Mopuri



ILSVRC top-5 Error rate

Dr. Konda Reddy Mopuri

Post 2015

2016 Winners (Trimps Soushen): Multi-scale Ensemble models of Inception, ResNets, WRN, etc.

Post 2015

- 2016 Winners (Trimps Soushen): Multi-scale Ensemble models of Inception, ResNets, WRN, etc.
- Improving ResNets: multiple parallel pathways of bottlenecks (ResNeXt), Squeeze and Excitation Nets (SENet)
- 3 Densenets, Tiny Networks (MobileNets, ShuffleNets), etc.

 $\textcircled{1} Initial families of architectures (AlexNet, ZFNet, VGG) \rightarrow Bigger the better!$

- Initial families of architectures (AlexNet, ZFNet, VGG) → Bigger the better!
- 2 GoogLeNet emphasized on efficiency

- Initial families of architectures (AlexNet, ZFNet, VGG) → Bigger the better!
- ② GoogLeNet emphasized on efficiency
- ③ ResNet enabled extreme depth

- Initial families of architectures (AlexNet, ZFNet, VGG) → Bigger the better!
- ② GoogLeNet emphasized on efficiency
- 3 ResNet enabled extreme depth
- ④ Focus back on efficiency: improving accuracy w/o growing the complexity

- Initial families of architectures (AlexNet, ZFNet, VGG) → Bigger the better!
- ② GoogLeNet emphasized on efficiency
- 3 ResNet enabled extreme depth
- ④ Focus back on efficiency: improving accuracy w/o growing the complexity
- Deploy-able models: MobileNet, ShuffleNet, etc.

- Initial families of architectures (AlexNet, ZFNet, VGG) → Bigger the better!
- ② GoogLeNet emphasized on efficiency
- 3 ResNet enabled extreme depth
- ④ Focus back on efficiency: improving accuracy w/o growing the complexity
- Deploy-able models: MobileNet, ShuffleNet, etc.
- Interview Search (NAS)